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Electronic feedback control of the intensity noise
of a single-frequency
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We present a fully quantum model to process the intensity noise reduction of a single-frequency intracavity-
doubled laser with an electronic feedback loop connected directly to the pump current of a laser diode. Adding
an electronic feedback term to the quantum Langevin equations for a free-running single-frequency-doubling
laser yields an analytical expression for the intensity noise spectrum of this system. Our previous experi-
mental results with a Nd:YVO4 /KTP green laser are basically in agreement with the theoretical calculation.
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1. INTRODUCTION
Single-frequency light sources with low-intensity noise
are useful for many applications, such as high-sensitivity
measurements, high-precision interferometry, precision
spectroscopy, and optical communications. Laser-diode-
(LD-) pumped solid-state lasers and intracavity frequency
lasers are well known as efficient sources for the genera-
tion of intensity-stable single-frequency radia-
tion.1–4 In practical LD-pumped single-frequency laser
systems, however, the intensity noise spectrum has a
resonance, that is, an underdamped driven second-order
oscillator, known as resonant relaxation oscillation
(RRO).5 The low-frequency part of the intensity-noise
spectrum below the RRO is determined by the laser’s
pump noise, whereas the RRO is driven by vacuum fluc-
tuations, dipole fluctuations, and intracavity losses. A
significant suppression of relaxation oscillations in diode-
pumped single-frequency lasers has been achieved by
various means, such as stabilizing laser intensity by
means of electronic feedback loops,6–9 injection locking of
a laser to an intensity-stable master laser,10,11 and a com-
bination of both techniques.12 The intensity noise at low
frequencies can be reduced when the pump noise is
suppressed.13,14

Recently technological progress has offered the possi-
bility of achieving single-frequency operation of LD-
pumped lasers with quite low intensity noise. Systems
that produce several watts of harmonic light are already
available from some vendors. Previously the authors
and others15 derived analytical expressions for the inten-
sity noise spectra of a free-running single-frequency
intracavity-doubled laser, using a linearized input–
output method. Compared with the single-frequency la-
ser, in the intensity noise spectrum of a single-frequency-
doubling laser RRO is not present, but there is still a
large amount of noise that results from an overdamped
driven second-order oscillator during nonlinear con-
0740-3224/2002/081910-07$15.00 ©
version.15 An experimental result of reducing the inten-
sity noise of an intracavity frequency doubler by means of
an optoelectronic feedback circuit directly connected to
the pump source of the LD was presented recently by the
authors and others.16 In this paper we propose a
quantum-theoretical model with which to process the sys-
tem of electronic feedback to the pump source of an intra-
cavity frequency doubler. Adding an electronic feedback
term to the quantum Langevin equations for the free-
running single-frequency-doubling laser produces the
analytical expression for the intensity noise spectrum of
this system. We compare the experimental results ob-
tained with a Nd:YVO4 /KTP green laser with the theo-
retical calculation, and good agreement is shown.

This paper is arranged as follows: In Section 2 we in-
troduce a linearized model of the intracavity frequency
doubler that involves all quantum noise sources. A spe-
cific term with which to describe the feedback is intro-
duced in Section 3. Theoretical analyses for a
Nd:YVO4 /KTP green laser based on the proposed model
are presented in Section 4, and a comparison of the
calculation results with the experimental data is given
in Section 5. A brief summary of the paper is found in
Section 6.

2. LINEARIZED OPERATOR EQUATION OF
MOTION
In a previous publication15 a detailed derivation of the
intensity-noise spectrum of a free-running single-
frequency-doubling laser that was achieved with a full
quantum model based on the Langevin approach was de-
scribed. Here, we first briefly recall the method and then
extend it to the laser with a feedback loop. We consider
the active single-frequency and frequency-doubled ring
laser shown in Fig. 1. All cavity mirrors have high re-
flectivity for the fundamental frequency v0 . The laser
2002 Optical Society of America
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medium and an optical nonlinear crystal were placed in-
side the laser cavity. The harmonic light generated from
the nonlinear crystal passes through one of the cavity
mirrors, which was antireflection coated for harmonic fre-
quency 2v0 . To ensure single-mode oscillation, we in-
serted a Faraday rotator and a polarization-selecting de-
vice into the cavity. We obtained the linearized
fluctuation equations by expanding the operators about
their semiclassical values. Resorting to adiabatical
elimination of the equation for the upper pump level, we
further simplified the set of equations for the four-level
atoms, which led to unidirectional pumping of the elec-
trons from the ground state directly to the upper lasing
level. Finally, the set of equations could be used to de-
scribe a three-level laser with noise inputs. The elec-
trons were pumped from the ground state to the upper
lasing level at a rate G by pump field B̂. Fluctuation dXB
in the amplitude of the pump field introduces a source of
noise during pumping. As not all the pump field was ab-
sorbed, an extra vacuum noise, dXq , must have been in-
volved. The lasing transition between levels 2 and 3 re-
lates to two sources of quantum noise: the first one,
dXCt

, is due to spontaneous emission between the lasing
levels, which occurs at a rate g t ; the second, dXCp

, is due
to collision- or lattice-induced dephasing of the lasing lev-
els at a rate gp . Electrons decaying out of the lower las-
ing level at a rate gs also give rise to spontaneous emis-
sion noise, dXCs

. Other noise sources included in the
model are the input vacuum fluctuation dXc of the
second-harmonic mode and dXAl

, which is derived from
total losses k l of the fundamental lasing mode within the
cavity. â is the fundamental lasing mode in the cavity,
and the ĉout is the second-harmonic output.

Fig. 1. Schematic of a quantum model description of the diode-
pumped single-frequency doubling laser. g t and gs are
spontaneous-emission rates; G is the pump rate; G is the
stimulated-emission coefficient; Vcout

is the output harmonic
noise; Vcin

is second-harmonic input noise; Vpump is the noise en-
tering the laser from its pump source; Vab is quantum (or
vacuum) noise that is due to imperfect absorption in the pump
field; Vspont32 and Vspont21 are noises from spontaneous emission;
Vdipole is the noise from dipole fluctuations; and V losses is the noise
from intracavity losses. DM is a dichroic mirror (reflectivity,
R ; 1 for the fundamental and R ; 0 for the harmonic); NLC,
nonlinear crystal.
The semiclassical equations of motion for the atomic
populations, intracavity fundamental mode, and second-
harmonic mode amplitude are

ȧ0 5
G

2
~J3 2 J2!a0 2 k la0 2 m̃a0* a0

2,

J̇1 5 2GJ1 1 gsJ2 ,

J̇2 5 G~J3 2 J2!a0a0* 1 g tJ3 2 gsJ2 ,

J̇3 5 2G~J3 2 J2!a0a0* 2 g tJ3 1 GJ1 ,

J1 1 J2 1 J3 5 1,

cout 5 Am̃a0
2, (1)

where Ji is the population of level i scaled by the number
of atoms N, and a0 is the amplitude of the lasing funda-
mental mode per root N. m̃ 5 Nm, where m is the dipole
coupling strength between the lasing mode and the
second-harmonic mode. Rate G is the stimulated-
emission rate per photon in the lasing mode, which is pro-
portional to the stimulated-emission cross section «s :

G 5 «src, (2)
where r is the atomic density and c is the speed of light in
the medium. Setting the time derivatives to zero in Eq.
(1), we obtained the semiclassical steady-state solution
and found the stable steady-state operating point of the
laser.

The linearized operator equations for the fluctuations
of the laser parameters near their semiclassical values
are15

d Ẋ̂a 5 G~dŝ3 2 dŝ2!a0 2 m̃a0* a0dX̂a 2 m̃a0
2dX̂a

1 A2k ldX̂Al
1 2Am̃a0* dX̂c

2 @G~J3 1 J2!#1/2dX̂Cp
,

dṡ̂1 5 2GA1 2 hdŝ1 1 gsdŝ2 2 AGJ1hdX̂B

1 AgsJ2dX̂Cs
1 @G~1 2 h!J1#1/2dX̂q ,

dṡ̂2 5 G~dŝ3 2 dŝ2!a0
2 1 G~J3 2 J2!a0dX̂a

1 g tdŝ3 2 gsdŝ2 1 AgsJ2dX̂Cs
2 Ag tJ3dX̂Ct

2 @G~J3 1 J2!#1/2a0dX̂Cp
,

dṡ̂3 5 2G~dŝ3 2 dŝ2!a0
2 2 G~J3 2 J2!a0dX̂a

2 g tdŝ3 1 GA1 2 hdŝ1 1 AGJ1hdX̂B

1 AgsJ2dX̂Cs
2 @G~1 2 h!J1#1/2dX̂q

1 Ag tJ3dX̂Ct
1 @G~J3 1 J2!#1/2a0dX̂Cp

, (3)

where dX̂a is the operator for the fluctuations of the fun-
damental lasing mode amplitude quadrature, dŝ i is the
operator for the fluctuations of the atomic population
about Ji , and h is the absorption efficiency of pump field.
According to the boundary condition of the second-
harmonic output field, the second-harmonic amplitude
quadrature fluctuation is given by

dX̂cout
5 2Am̃a0dX̂a 2 dX̂c . (4)



1912 J. Opt. Soc. Am. B/Vol. 19, No. 8 /August 2002 Zhang et al.
Hence the expression for the quadrature amplitude fluc-
tuations of second-harmonic output of the free-running la-
ser is obtained in terms of the input field fluctuations in
frequency space:

dX free–cout
5 W0~v!dXB 1 W1~v!dXc 1 W2~v!dXq

1 W3~v!dXCs
1 W4~v!dXCt

1 W5~v!dXp

1 W6~v!dXAl
, (5)

where the absence of a circumflex indicates a Fourier
transform and
5 ^udXCp
u2&is the dipole fluctuation noise between level

u3& and level u2&; and V losses 5 ^udXAl
u2& is the noise intro-

duced from the fundamental mode intracavity losses.
The second-harmonic amplitude noise spectrum V free–cout

is normalized to the quantum-noise limit. All input
quantum-noise sources are on the level of the quantum-
noise limit, Vc in

5 Vab 5 Vspont21 5 Vspont32 5 V losses 5 1.
However, pump noise spectrum Vpump depends on the
noise of the pump source.
W0~v! 5
2Am̃a0AhGJ1Ga0~iv 1 gs 2 g t!

~iv 1 2m̃a0
2!z~v! 1 G2a0

2~J3 2 J2!~2iv 1 gs 1 2G̃ !
,

W1~v! 5
4m̃a0

2z~v!

~iv 1 2m̃a0
2!z~v! 1 G2a0

2~J3 2 J2!~2iv 1 gs 1 2G̃ !
2 1,

W2~v! 5 S 1 2 h

h
D 1/2

W0~v!,

W3~v! 5
2Am̃a0Ga0AgsJ2~iv 1 2G̃ 1 g t!

~iv 1 2m̃a0
2!z~v! 1 G2a0

2~J3 2 J2!~2iv 1 gs 1 2G̃ !
,

W4~v! 5
2Am̃a0Ag tJ3Ga0~iv 1 2G̃ 1 gs!

~iv 1 2m̃a0
2!z~v! 1 G2a0

2~J3 2 J2!~2iv 1 gs 1 2G̃ !
,

W5~v! 5
2Am̃a0@G~J3 1 J2!#1/2@Ga0

2~iv 1 2G̃ 1 gs! 2 z~v!#

~iv 1 2m̃a0
2!z~v! 1 G2a0

2~J3 2 J2!~2iv 1 gs 1 2G̃ !
,

W6~v! 5
2Am̃a0A2klz~v!

~iv 1 2m̃a0
2!z~v! 1 G2a0

2~J3 2 J2!~2iv 1 gs 1 2G̃ !
,

z~v! 5 ~iv 1 G̃ !~iv 1 gs 1 2Ga0
2 1 g t! 1 gs~Ga0

2 1 g t!, (6)
where G̃ 5 GA1 2 h. The second-harmonic amplitude
noise spectrum (V free–cout

) is

V free–cout
~v! 5 ^udX free–cout

u2&

5 uW0~v!u2Vpump 1 uW1~v!u2Vc in

1 uW2~v!u2Vab

1 uW3~v!u2Vspont21uW4~v!u2Vspont32

1 uW5~v!u2Vdipole 1 uW6~v!u2V losses .

(7)

A variety of noise sources in Eq. (7) is separately ex-
pressed, term by term: Vc in

5 ^udXcu2& is the second-
harmonic input noise; Vab 5 ^udXqu2& is quantum (or
vacuum) noise owing to imperfect absorption to pump
field; Vpump 5 ^udXBu2& is the intensity noise of the pump
source; Vspont21 5 ^udXCs

u2& and Vspont32 5 ^udXCt
u2& are

the spontaneous-emission noise from level u2& to level u1&
and from level u3& to level u2&, respectively; Vdipole
3. SECOND-HARMONIC AMPLITUDE NOISE
SPECTRUM INCLUDING OPTOELECTRONIC
FEEDBACK
In the case including optoelectronic feedback connected to
the pump current of the LD, pump field P̂ can be written
with two terms:

P̂ 5 B̂ 1 dÊ, (8)

where B̂ is pump field without feedback and dÊ is the ad-
ditional field introduced by the feedback. Field dÊ does
not change the dc operating point of the laser, which is
governed solely by B̂. The amplitude fluctuations of the
pump field can be found by linearizing B̂ about its semi-
classical average value B̄:

P̂ 5 B̄ 1 dB̂ 1 dÊ

⇒dP̂ 5 dB̂ 1 dÊ

⇒dX̂P 5 dẊB 1 dX̂E . (9)
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Field dÊ may be expressed as a convolution of the time
response of the feedback electronics, k(t), and the ac com-
ponent of the in-loop photocurrent, d î1(t). We assume
that there is an optical loss b in the diode laser, which at-
tenuates the feedback signal and introduces additional
vacuum noise d v̂b , so dÊ is written as follows:

dÊ 5 2Ab E
2`

`

k~v !d î1~t 2 v !dv 2 A1 2 bd v̂b ,

(10)

where the minus is involved with negative feedback on
the pump source. Photocurrent î1 may be expressed in
terms of second-harmonic output ĉout , beam-splitter ratio
e, the detector efficiency hD :

î1 5 $AehDĉout 1 @hD~1 2 e!#1/2d v̂s 1 A1 2 hDd v̂D%

3 $AehDĉout 1 @hD~1 2 e!#1/2d v̂s 1 A1 2 hDd v̂D%,

(11)

where vacuum fluctuations d v̂s and d v̂D result from the
beam splitter and the in-loop photodetector, respectively.
Field ĉout is expanded about the semiclassical value c̄out ,
i.e., ĉout 5 c̄out 1 d ĉout . Retaining only first-order fluc-
tuation terms yields the following fluctuations of the in-
loop photocurrent:

d î1 5 AehDAm̃a0
2$AehDdX̂cout

1 @hD~1 2 e!#1/2dX̂vs

1 A1 2 hDdX̂vD
%, (12)

where we have taken c̄out 5 Am̃a0
2. Amplitude quadra-

ture fluctuation dX̂i1
and dX̂E are then given by
dX̂i1
5 AehDdX̂cout

1 @hD~1 2 e!#1/2dX̂vs

1 A1 2 hDdX̂vD
, (13)

dX̂E 5 2AehDAm̃a0
2 E

2`

1`

k~v !dX̂i1
~t 2 v !dv

2 A1 2 hDdX̂vb
, (14)

respectively. Substituting Eqs. (14), (13), and (9) into
Eqs. (3), and using boundary condition Eq. (4), we solved
these equations in Fourier space to yield the amplitude
quadrature fluctuation of the second-harmonic output:

dXfd –cout
5 H W0~v!FdXB 2 S 1 2 b

h
D 1/2

dXbG2W0~v!H~v!

3F S 1 2 e

e
D 1/2

dXvs
1 S 1 2 hD

ehD
D 1/2

dXvDG
1 W1~v!dXc 1 W2~v!dXq 1 W3~v!dXCs

1 W4~v!dXCt
1 W5~v!dXCp

1 W6~v!dXAlJ Y @1 1 W0~v!H~v!#, (15)

where the form of function Wn(v) was given in Section 2
and H(v) stands for

H~v! 5 2AbehDAm̃a0
2K~v!. (16)

Function H(v) could then be identified as the transfer
function of the feedback system to summarize the total ef-
fect of the beam splitter, the control electronics, and the
LD efficiency. Function W0(v) is the transfer function of
the free-running laser with respect to pump noise. As
was mentioned above for Eqs. (6), function Wi(v) (i
5 @1,..., 6#) is the free-running laser transfer function
for the other various quantum-noise terms.

The noise spectra of the in- and out-of-loop fields that
emerges from the beam splitter, ĉ1 and ĉ2 , are expressed
in terms of X̂fd –cout

:

dXc1
5 AedXfd –cout

1 A1 2 edXvs
,

dXc2
5 A1 2 edXfd –cout

2 AedXvs
. (17)

Combining Eqs. (15) and (17), we found the spectra of the
in- and out-of-loop fields:
Vc1
5

e@V free–cout
1 uW0~v!u2~1 2 b/h!# 1 uW0~v!H~v!u2~1 2 hD /ehD! 1 ~1 2 e!Vvs

u1 1 W0~v!H~v!u2 , (18)

Vc2
5

~1 2 e!@V free–cout
1 uW0~v!u2~1 2 b/h! 1 uW0~v!H~v!u2!~1 2 hD /ehD!] 1 ~Vvs

/e!ue 1 W0~v!H~v!u

u1 1 W0~v!H~v!u2 , (19)
where V free–cout
is the noise spectrum of the free-running

laser and Vvs
is the noise that is due to the injected

vacuum at the beam splitter.
The out-of-loop field is our main interest, because this

is the only observable output of the control loop. In the
limit without feedback @e, H(v) → 0# and b 5 1, the
spectrum Vc2

is recovered to the free-running second-
harmonic amplitude noise spectrum [Eq. (7)]. In the
limit of large negative feedback, the out-of-loop noise was
found to be

lim
H~v!→`

~Vc2
! 5

~1 2 e!~1 2 hD!

ehD
1

Vvs

e
. (20)
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For a Poissonian vacuum at the beam splitter (Vvs
5 1)

the high gain limit of the out-of-loop noise is always
greater than 1; i.e., it is always super-Poissonian. This
result is in agreement with the conclusions of other
quantum-feedback models.17–19 The cause of this behav-
ior lies in the vacuum fluctuations introduced by the
beam splitter. Because the noise that is due to the beam
splitter in the out-of-loop field is out of phase with the
noise introduced to the in-loop field [see Eqs. (17)], the
negative feedback therefore amplifies the beam-splitter
vacuum noise in the out-of-loop field, which precludes
reaching sub-Poissonian intensity statistics. The high-
gain limit of the in-loop field is

lim
H~v!→`

~Vc1
! 5

1 2 hD

hD
. (21)

The noise of the in-loop field can therefore become sub-
Poissonian, depending on the value of hD . This result is
also in agreement with other quantum-feedback
models,17–19 but this field is not a free field and does not
obey the commutators of a free field.

4. THEORETICAL ANALYSES OF THE
NOISE REDUCTION FOR A Nd:YVO4 ÕKTP
GREEN LASER
The Nd:YVO4 /KTP green laser always runs in a regime
where the rate of decay out of lower lasing level gs is
much larger than stimulated-emission rate Ga0

2, pump
rate G, and rate g t of spontaneous emission between las-
ing levels. The corresponding parameter values for the
Nd:YVO4 /KTP green laser are listed in Table 1. In this
case the pump noise transfer function is simplified to

W0~v! 5
2~m̃a0

2GhJ1!1/2Ga0

ivgL 1 ~vr
2 2 v2!

, (22)

where

vr 5 @2m̃a0
2~Ga0

2 1 G̃ 1 g t! 1 2Ga0
2~m̃a0

2 1 k l!#
1/2,

(23)

Table 1. Properties of the Nd:YVO4 ÕKTP
Single-Frequency Doubling Ring Laser

Property Symbol Value

Length of cavity L 350 mm
Single-pass losses dcav 2%
Maximum pump power Pmax 2 W
Decay rate of the

intracavity losses
k1 8.5 3 106 s21

Number of lasing
atoms

N 1017

Decay rate of the upper
lasing level

g t 3 3 103 s21

Decay rate of the lower
lasing level

gs 3.3 3 107 s21

Simulated-emission rate
per photon

G 2 3 1012 s21

Maximum pump rate G 8 s21

Nonlinear conversion rate m̃ 6 3 1014 s21
gL 5 2m̃a0
2 1 Ga0

2 1 G̃ 1 g t . (24)

vr indicates the resonant frequency in the spectrum, and
gL is the damping rate of the oscillations. Under these
conditions, W0(v) is seen to be a second-order transfer
function, which is similar to the expression for a damped,
driven pendulum. Frequency vr and damping rate gL of
the single-frequency-doubling laser include the term of
nonlinear conversion m̃a0

2, so the frequency-doubling
process will influence the behavior of a laser significantly.
Usually damping rate gL is larger than vr ; then the
pump transfer function is the overdamped driven second-
order oscillator and does not exhibit the phenomenon of
RRO.15,16 Plots of the phase and the amplitude of the
pump transfer function for a single-frequency-doubling
laser are shown in Fig. 2. There is no peak of RRO in the
amplitude plot of the pump transfer function [curve (1)],
and the phase changes smoothly, with no areas of abrupt
change [curve (2)]. In our design to the feedback loop a
second-order oscillator is considered. The requirement
for designing a good feedback circuit should be to ensure
that the magnitude of the open-loop gain is less than 1
when the phase of the open-loop gain reaches 2180°; oth-
erwise the feedback loop will be unstable, because of an
enhancement of the spectral noise. Note also that a
stable feedback loop may amplify noise if the open-loop
gain approaches 21.

We introduce a phase advance filter as shown Fig. 3 to
enhance the performance of the control loop. The form of
the phase advance filter is

Had~v! 5 F
R2~1 1 ivCR1!

R2~1 1 ivCR1! 1 R1
, (25)

Fig. 2. Amplitude (1) and phase (2) of the pump noise transfer
function for the single-frequency intracavity frequency-doubling
laser.

Fig. 3. Circuit of a phase advance filter. GND, the ground of
the circuit.
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where R1 and R2 are the resistances, C is the capacitor,
and F is the dc gain of the phase advance filter. It has a
maximum phase advance of fm at frequency vm , where

tan fm 5
R1

2@R2~R2 1 R1!#1/2 , (26)

vm 5 @~R2 1 R1! /C2R1
2R2#1/2.

(27)

A high-pass filter serves for the amplitude response of
Had(v). To optimize the feedback loop we chose fre-
quency vm on a specific operating point where the open-
loop transfer function W0(v)Had(v) has a magnitude of 1
by solving

uW0~vm!Had~vmu 5 1,

vm 5 @~R2 1 R1! /C2R1
2R2#1/2. (28)

for capacitor C. We can freely choose the amount of
phase advance fm by changing the resistance R2 and R1 .
Figure 4 shows the predicted effect of feedback for a typi-
cal Nd:YVO4 /KTP single-frequency-doubling laser with
the theoretical analyses given above. Curve a is the
noise spectrum of the free-running laser, i.e., Had(v)
5 0. Curve b is a spectrum with feedback but without a
phase advance filter, where we take Had(v) 5 F; F is a
real positive number. The spectrum with the optimized
phase advance filter is shown in curve c. It is obvious
that a considerable improvement in laser noise has been
achieved.

5. COMPARISON OF THEORETICAL
CALCULATION AND EXPERIMENTAL
RESULTS FOR A Nd:YVO4 ÕKTP SINGLE-
FREQUENCY-DOUBLING LASER
The detailed experimental arrangement and results for
the noise spectrum measurement can be found in a previ-
ous publication.16 The experimental arrangement for
noise control and monitoring of a laser is shown in Fig. 5.
We monitor in-loop and out-of-loop noise of the laser with
photodetectors D1 (in loop) and D2 (out of loop) (FND-100
silicon photodiodes from EG&G). D1 (Analog Modules
714A) has a large gain and a broad bandwidth, from 10
kHz to ;100 MHz. A transimpedance operational ampli-
fier circuit in D2 is used to convert photocurrent to volt-
age. We inject the error current directly into the DL from
the driving circuit to minimize time delay. This circuit
consists of a buffer (BUF634) followed by a 100-V resistor
in parallel with a 1-nF capacitor, followed by a 4-mF ca-
pacitor, which ac couples the injected signal to prevent
any change in the output power of the diode laser. A
noise reduction circuit is employed to reduce the noise of
the laser. The noise-reduction circuit used in the feed-
back loop consists of three noninverting amplifiers and a
series of active filters to provide phase advance and gain.
The phase advance filter can enhance the performance of
the control loop, which includes second-order resonance.
For the single-frequency Nd:YVO4 /KTP green laser the
maximum phase advance is 34° at 300 kHz, and its feed-
back loop is more stable than the fundamental laser be-
cause the single-frequency intracavity frequency-doubling
laser includes an overdamped driven second-order oscilla-
tor. Open-loop gain G starting from point A returning to
point A was found to attain a maximum value of 8 dB at
100 kHz, thus providing an intensity noise reduction fac-
tor 1/u1 1 Gu of ;7 dB, and to have two unity gain points
at ;200 Hz and ;200 kHz, with ;20° and ;100° phase
margins. The noise reduction spectra are shown in Fig.
6. The noise at low frequency is reduced by 7 dB relative
to that of the free-running laser. The noise is amplified
near 300 kHz because that is where the open-loop gain

Fig. 4. Effect of feedback on intensity noise in a typical
Nd:YVO4 /KTP single-frequency-doubling laser. a, Free-
running laser spectrum; b, spectrum with feedback and without
a phase advance filter; c, spectrum with feedback and with an op-
timized phase advance filter. Parameters used in the calcula-
tion were Vpump 5 106, e 5 0.05, and h1 5 0.9. The phase ad-
vance is 45°.

Fig. 5. Experimental arrangement for noise control and moni-
toring of the laser. A and B are the test points.

Fig. 6. Comparison of theoretical calculation and experimental
result. QNL, quantum-noise limit.
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approaches 21. To fit the experimental noise spectra to
the numerical calculation we take

H~v! 5 rK~v!exp~2ivt!, (29)

where K(v) is the transfer function of the electronics in
the feedback loop. Parameter r is used to express the
change in gain that is due to the detected quantities of
light and the efficiency of the LDs. Parameter t is a time
delay introduced by the LDs and the optical path that is
not included in K(v). Time delays are important, as
they introduce a phase lag that counteracts the required
phase advance. In the numerical calculation we use Eq.
(25) as the transfer function K(v), in which resistance R1
and R2 and capacitor C are all experimental parameters
but r and vt are regarded as constant parameters for dif-
ferent frequencies to reach the optimum fitness with the
experimental noise spectra. Figure 6 shows the intensity
noise spectra of the harmonic field measured experimen-
tally and the result of numerical calculation with the for-
mula in Section 4. We can see that they are qualitatively
in agreement. However, in fact r and vt are not exact
constants and cannot easily be experimentally measured,
because parameter r depends on the detected quantities
of light and the efficiency of the LDs and time delay t de-
pends on the LD driver, the LD, and the optical path.
The shape of the control loop of the phase advance filter
used in the experiment is not exactly in agreement with
the theoretical design values, and phase delay vt has a
frequency dependence. In the calculation we merely re-
gard them as constants, that is, as the origins of this dis-
crepancy between theoretical and experimental values,
especially at low frequency and near 300 kHz.

6. CONCLUSIONS
For the first time of which we are aware, the behavior of a
laser-diode-pumped single-frequency Nd:YVO4 /KTP
green laser with electronic feedback to the pump source
was investigated theoretically. We obtained an analyti-
cal expression for the intensity noise spectrum by combin-
ing a quantum Langevin approach to a single-frequency-
doubling laser with a model of the feedback loop. The
good agreement between the theoretical prediction and
the experimental results for a Nd:YVO4 /KTP green laser
demonstrated the utility of the model presented here.
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